The All-Pairs Shortest Paths Problem

Given a weighted digraph G(V,E) with weight function w: E -> R, (R is the set of real numbers), determine the length of the shortest path (i.e., distance) between all pairs of vertices in G . Here we assume that there are no cycles with zero or negative cost.

Without negative cost cycle With negative cost cycle

Soution1: If there are no negative cost edges apply Dijkstra's algorithm to each vertex (as the source) of the digraph. Recall the Dijkstra's algorithm run in (V+E(log V)).This gives a **(V(V+E(log V))).**

Input: weighted, directed graph G = (V,E), with weight function w : E ->R. The weight of path $p = < v_0$, v_1 $vk >$ is the sum of the weights of its constituent edges:

$$
w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)
$$

The shortest-path weight from u to v is

if there is path from u to v $\delta(u,v)$ = $\begin{array}{ccc} & \infty & \multicolumn{2}{c}{} & \multicolumn{2}{c}{}$

A shortest path from vertex u to vertex v is then defined as any path p with weight $w(p) = \delta(u,v)$.

All Pairs Shortest Paths: Compute d(u, v) the shortest path distance from u to v for all pairs of vertices u and v.

Assume that the graph is represented by an n x n matrix with the weights of the edges.

$$
W_{ij} = \begin{cases} 0 & \text{if } i = j \\ w(i,j) & \text{if } i \square j \& (i,j) \in E \\ \infty & \text{if } i \square j \& (i,j) \text{ not } \in E \end{cases}
$$

Floyd-Warshall, Dynamic Programming

- \bullet $\;$ Let d $^{\text{(k)}}$ ij be the weight of a shortest path from vertex i to vertex j for which all intermediate vertices are in the set {1,2…… k}.
- When $k = 0$, a path from vertex i to vertex j with no intermediate vertex numbered higher than 0 has no intermediate vertices at all, hence $\mathsf{d}^{(\mathsf{0})}$ ij = wij.

$$
d^{(k)}ij = \n\begin{cases}\n\text{wij} & \text{if } k=0 \\
\text{min}\{d^{(k-1)}ij, \ d^{(k-1)}ik + d^{(k-1)}kj \} & \text{if } k \geq 1\n\end{cases}
$$

Algorithm

Example:

$$
\begin{bmatrix}\n0 & 3 & \infty & \infty \\
& \infty & 0 & 12 & 5 \\
& 4 & \infty & 0 & -1 \\
& 2 & -4 & \infty & 0\n\end{bmatrix}
$$

 D¹0 3 **D 1 [2,3] = min(D⁰ [2,3] , D⁰ [2,1] + D⁰ [1,3]) = min(12,+) =12** 0 **12 5 D 1 [2,4] = min(D⁰ [2,4] , D⁰ [2,1] + D⁰ [1,4]) = min(5,+) =5** 4 **7** 0 **-1 D 1 [3,2] = min(D⁰ [3,2] , D⁰ [3,1] + D⁰ [1,2]) = min(,4+3) =7** 2 **-4** 0 **D 1 [3,4] = min(D⁰ [3,4] , D⁰ [3,1] + D⁰ [1,4]) = min(-1,4+) =-1 D 1 [4,2] = min(D⁰ [4,2] , D⁰ [4,1] + D⁰ [1,2]) = min(-4,2+3) =-4 D 1 [4,3] = min(D⁰ [4,3] , D⁰ [4,1] + D⁰ [1,3]) = min(,2+) =** D²0 3 **15 8 D 2 [1,3] = min(D¹ [1,3] , D¹ [1,2] + D¹ [2,3]) = min(,3+12) =15** 0 12 5 **D 2 [1,4] = min(D¹ [1,4] , D¹ [1,2] + D¹ [2,4]) = min(,3+5) =8 4** 7 0 **-1 D 2 [3,1] = min(D¹ [3,1] , D¹ [3,2] + D¹ [2,1]) = min(4,7+) =4 2** -4 **8** 0 **D 2 [3,4] = min(D¹ [3,4] , D¹ [3,2] + D¹ [2,4]) = min(-1,7+5) =-1 D 2 [4,1] = min(D¹ [4,1] , D¹ [4,2] + D¹ [2,1]) = min(2,-4+) =2 D 2 [4,3] = min(D¹ [4,3] , D¹ [4,2] + D¹ [2,3]) = min(,-4+12) =8** D³0 **3** 15 **8 D 3 [1,2] = min(D² [1,2] , D² [1,3] + D² [3,2]) = min(3,15+7) =3 16** 0 12 **5 D 3 [1,4] = min(D² [1,4] , D² [1,3] + D² [3,4]) = min(8,15+(-1)) =8** 4 7 0 -1 **D 3 [2,1] = min(D² [2,1] , D² [2,3] + D² [3,1]) = min(,12+4) =16 2** -**4** 8 0 **D 3 [2,4] = min(D² [2,4] , D² [2,3] + D² [3,4]) = min(5,12+(-1)) =5 D 3 [4,1] = min(D² [4,1] , D² [4,3] + D² [3,1]) = min(2,8+4) =2 D 3 [4,2] = min(D² [4,2] , D² [4,3] + D² [3,2]) = min(-4,8+7) =-4**

$$
D^{4}
$$
\n
$$
D^{4}
$$
\n
$$
D^{4}
$$
\n
$$
D^{5}
$$
\n
$$
D^{6}
$$
\n
$$
D^{7}
$$
\n
$$
D^{8}
$$
\n
$$
D^{8}
$$
\n
$$
[1,2] = \min(D^{3} [1,2] , D^{3} [1,4] + D^{3} [4,2]) = \min(15,8+4) = 3
$$
\n
$$
D^{4} [1,3] = \min(D^{3} [1,3] , D^{3} [1,4] + D^{3} [4,3]) = \min(15,8+8) = 15
$$
\n
$$
D^{4} [2,1] = \min(D^{3} [2,1] , D^{3} [2,4] + D^{3} [4,1]) = \min(16,5+2) = 7
$$
\n
$$
D^{4} [2,3] = \min(D^{3} [2,3] , D^{3} [2,4] + D^{3} [4,3]) = \min(12,5+8) = 12
$$
\n
$$
D^{4} [3,1] = \min(D^{3} [3,1] , D^{3} [3,4] + D^{3} [4,1]) = \min(4,-1+2) = 1
$$
\n
$$
D^{4} [3,2] = \min(D^{3} [3,2] , D^{3} [3,4] + D^{3} [4,2]) = \min(7,-1+4) = -5
$$